Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Li Wang, Yan Zheng* and Wen-Qin Zhang

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
tjuzhengyan@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.059$
ωR factor $=0.174$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Betamethasone dipropionate

The title compound (systematic name: 9α-fluoro- $11 \beta, 17 \alpha, 21$ -trihydroxy-16 β-methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropionate, BMDP), $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FO}_{7}$, crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. The overall shape of the steroid skeleton is similar to that of other anti-inflammatory steroids. Ring A is planar due to the 1,4 -dien-3-one moiety, rings B and C have normal chair conformations and ring D adopts an envelope conformation.

Comment

Betamethasone dipropionate, an anti-inflammatory steroid, has been synthesized and used as an asthma drug since 1979 (Piitaa, 1979). Compared with beclomethasone dipropionate, another efficient asthma drug (Duax et al., 1981), the present compound contains a smaller F atom in place of a Cl atom at the 9α position. We report here the crystal structure of BMDP, (I), which was elucidated by X-ray diffraction analysis.

(I)

Compound (I) crystallizes in the orthorhombic space group $P 2_{1} 2_{2} 2_{1}$ and the overall shape of the steroid skeleton is similar to that of beclomethasone dipropionate (Duax et al., 1981) and some other anti-inflammatory steroids, such as dexamethasone (Rohrer \& Duax, 1977) or a 1,4-dien-3-one- 6α-hydroxy steroid (Nakai, 1991). As shown in Fig. 1, ring A is planar due to the 1,4-dien-3-one moiety, rings B and C have normal chair conformations and ring D adopts an envelope conformation. All the bond lengths and valence angles are comparable to those observed in other steroid compounds (Duax \& Norton, 1975). Substitution at the 17α and 23 positions restricts the conformational flexibility of the 17α side chain, resulting in a $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{O} 3$ torsion angle of $-36.0(5)^{\circ}$, which is in the range observed for other 17α-substituted steroids (Duax et al., 1980).

Experimental

BMDP was obtained from Tianjin Tianyao Pharmaceutical Co. Ltd. Colorless single crystals were obtained by slow diffusion of hexane into an acetone solution of (I) (m.p.: 451-453 K); analysis calculated

Received 7 May 2004 Accepted 18 May 2004 Online 29 May 2004
for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FO}_{7}$: C 66.59, H 7.33\%; found: C 66.26, H 7.45\%. IR (KBr): 3300 (s), 2940 (s), 1733 (vs), 1663 (vs), 1607 (vs), 1461 (m), 1392 (s), $1289(m), 1204(m), 1144(w), 1066(s), 1034(m), 1012(m), 983(w)$, $957(w), 888(s), 811(w), 696(s), 629(w) \mathrm{cm}^{-1}$.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FO}_{7}$
$M_{r}=504.58$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.883$ (4) A
$b=13.833$ (4) \AA
$c=15.737$ (5) \AA
$V=2587(1) \AA^{3}$
$Z=4$
$D_{x}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996;
Blessing, 1995)
$T_{\text {min }}=0.975, T_{\text {max }}=0.977$
14862 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.174$
$S=1.09$
2982 reflections
339 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 983
reflections
$\theta=3.0-25.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.26 \times 0.24 \times 0.24 \mathrm{~mm}$

2982 independent reflections
2310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-6 \rightarrow 14$
$k=-17 \rightarrow 16$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0998 P)^{2}\right. \\
& \quad+0.9843 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$ and $1.5 U_{\text {eq }}(\mathrm{C})$. The propionyl group in (I) is disordered and was refined isotropically with restraints containing EADP C21 C22, C21' C22' and C20 C20'; DFIX $1.240 .01 \mathrm{O} 7 \mathrm{C} 20 \mathrm{O}^{\prime} \mathrm{C} 20^{\prime}, 1.540 .01 \mathrm{C} 20 \mathrm{C} 21 \mathrm{C} 21 \mathrm{C} 22{\mathrm{C} 20^{\prime}}^{\prime} \mathrm{C} 21^{\prime} \mathrm{C} 21^{\prime}$ C22', 2.52 0.01 C20 C22 C20' C22', 1.4 0.01 O6 C20 O6 C20', 1.45 0.01 O6 C19 and FLAT 0.01 O6 O7 C20 C21, O6 O7' C20' C21', resulting in occupancy factors of 23 and 77% for the two parts, respectively. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
Molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and the minor disorder components have been omitted.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the 985 project of China.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Duax, W. L., Cody, V. \& Strong, P. D. (1981). Acta Cryst. B37, 383-387.
Duax, W. L., Griffin, J. F., Rohrer, D. C. \& Weeks, C. M. (1980). Lipids, 15, $783-$ 792.

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum.
Nakai, H. (1991). Acta Cryst. C47, 1766-1767.
Piitaa, R. M. (1979). Jpn Patent No. JP54109958. (Applicant: PATPHARMA ETS.)
Rohrer, D. C. \& Duax, W. L. (1977). Cryst. Struct. Commun. 6, 123-126.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

